

WIRELESS AUTHENTICATION PROTOCOL IMPLEMENTATION:
DESCRIPTIONS OF A ZERO-KNOWLEDGE PROOF (ZKP)
PROTOCOL IMPLEMENTATION FOR TESTING ON GROUND AND
AIRBORNE MOBILE NETWORKS

JANUARY 2015

TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-006

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2015-006 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
RICHARD MICHALAK MARK H. LINDERMAN
Chief, Information Transmission Branch Technical Advisor, Computing &
 Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JANUARY 2015
2. REPORT TYPE

TECHNICAL REPORT
3. DATES COVERED (From - To)

DEC 2011 – FEB 2012
4. TITLE AND SUBTITLE

WIRELESS AUTHENTICATION PROTOCOL IMPLEMENTATION:
DESCRIPTIONS OF A ZERO-KNOWLEDGE PROOF (ZKP)
PROTOCOL IMPLEMENTATION FOR TESTING ON GROUND AND
AIRBORNE MOBILE NETWORKS

5a. CONTRACT NUMBER
IN-HOUSE

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Thomas Scatko and Nathaniel Rowe

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RITE
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITE
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-006

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2014-5867
Date Cleared: 11 DEC 2014
13. SUPPLEMENTARY NOTES
This technical report presents short term in-house work performed by AFRL scientists and engineers in their official work
capacity. No official in-house JON/project was established for this effort.

14. ABSTRACT
Authentication is deemed to be a critical function in the operation of tactical wireless ad hoc networks. The dynamic
nature and unpredictability of these self-organizing networks requires that new security protocols be deployed that allow
users to efficiently gain access to network resources without the burden of a centralized security infrastructure.
Authentication protocols based on Zero-Knowledge Proof (ZKP) of identity schemes provide a means for establishing
mutual trust between network entities. While many papers have looked at the virtues of ZKP-based authentication
protocols from an academic perspective, little work has been carried out to actually deploy and test the protocols in
fielded wireless networks. In this paper we present lessons-learned regarding the installation of ZKP-based
authentication protocol on processing hardware designed for deployment on AFRL’s small unmanned aerial vehicle
(UAV) test bed.

15. SUBJECT TERMS

Zero-Knowledge Proof Protocol Testing

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

51

19a. NAME OF RESPONSIBLE PERSON
THOMAS SCATKO

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
 N/A

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

Contents
List of Figures .. ii

List of Tables ... ii

1.0 Summary ... 1

2.0 Introduction .. 2

3.0 Methods, Assumptions, and Procedures .. 4

4.0 Results and Discussion .. 12

5.0 Conclusions ... 16

6.0 Recommendations .. 18

7.0 References .. 21

Appendix A: ZKP Prover Code ... 22

Appendix B: ZKP Verifier Code .. 36

List of Symbols, Abbreviations, and Acronyms ... 46

i

Figures

Figure 1: Typical air-ground network scenario. .. 2
Figure 2: Typical single round authentication process. .. 5
Figure 3: Two processor benchtop wireless setup. .. 6
Figure 4: UAV payload processor device. ... 7
Figure 5: UAV ground station electronics package. .. 8
Figure 6: Benchtop test set-up. ... 10
Figure 7: Prover authentication screen display. ... 12
Figure 8: Verifier authentication screen display. .. 12
Figure 9: Prover response attribute. ... 13
Figure 10: Verifier response attributes. .. 14
Figure 11: Verifier unsuccessful authentication attempt display. .. 15
Figure 12: AFRL Stockbridge Test Site. .. 18
Figure 13: AFRL small UAVs. ... 18
Figure 14: Upgraded ground station. .. 19
Figure 15: Upgraded payload package.. 20
Figure 16: Miniature Processor payload. .. 20

Tables

Table 1: UAV payload computer specifications. ... 9
Table 2: Ground station computer specifications. ... 9
Table 3: UAV payload and ground station wireless modem specifications. ... 10
Table 4: Verifier response markers. .. 13
Table 5: Verifier response markers. .. 14

ii

1.0 Summary

This Technical Note describes work performed to implement a ZKP-based authentication protocol on
small stand-alone processors suitable for use on small UAVs and ground vehicles. The objective of this
effort was to transfer the ZKP protocols from a (laboratory) desktop operating environment to a
(deployable) mobile wireless set-up. The targeted systems consisted of commercial-off-the-shelf (COTS)
processors and wireless networking hardware.

Two weeks of engineering/technician time was allocated to perform the required work: identify
available system hardware and LINUX operating system software; configure the standalone processing
nodes; install the operating systems, software drivers, and necessary math libraries; port over the ZKP
authentication protocols; and finally, test and demonstrate protocol operation over wireless
communication links. The resulting lessons-learned will be used in the planning of future field
experiments involving (air-to-air and air-to-ground) mobile wireless networks.

The most arduous task involved configuring the processors’ LINUX operating system. While
nearly all of the additional software routines needed were available as freeware over the internet, they
could not be downloaded directly to the processors through AFRL’s network connections. Instead, the
code had to be first downloaded to a CD-ROM then transferred to the standalone processors.
Unfortunately, none of the embedded processors were configured to support CD-ROM drives i.e., size,
weight and power (SWAP) requirements precluded their use on the UAV and ground stations. An
inordinate amount of time was spent locating compatible CD-ROM drives and software drivers, installing
them on each of the processors, and performing the needed software upgrades.

Porting of the ZKP authentication code proved to be straightforward. Only minor changes to the
code were required: changing device IP addresses, and modification of certain lines of code used for the
set-up of communication sockets. In addition, certain math libraries were needed to compile the code.
Once again the issue of downloading code from the internet to the embedded processors had to be
addressed.

Testing of the ZKP protocol, between various pairs of standalone processors, was not without
problems. While the wireless networks that were implemented allowed for communications between
nodes, successful operation the ZKP authentication code was achieved on only one pair of like devices
i.e., a set of ground stations. Details regarding ZKP protocol implementation, testing results, and
recommendations for follow-on work are documented in the remainder of this document.

Approved for Public Release; Distribution Unlimited.
1

2.0 Introduction

Authentication is required for secure interactions in tactical wireless mobile networks. However,
implementing authentication protocols in self-configuring networks can be problematic given that many
of today’s currently deployed protocols make use of centralized security policies and controlled security
infrastructure i.e., public-key encryption mechanisms and hardware to prevent unauthorized access,
which demands that there exist some degree of pre-defined network structure which would, in effect,
be counterproductive with regard to creating an ad hoc network.

A simple tactical ad hoc networking scenario is illustrated in Figure 1. Here, an UAV is shown
entering a battlespace where it must a) establish a network connection with airborne network assets
already in theater, and b) make its presence known to ground (network) users so that they can establish
network connections in order to access on-board sensor resources. Here we assume that any node
entering a network has no a prior knowledge of the existing network topology and has the added
responsibility of discovering which nodes it can securely communicate with. Furthermore, it is assumed
that in the network not all nodes are able to directly communicate with each other, in which case
information may need to be relayed across the network [1]. In both situations, the amount of time
available for establishing a trusted communication maybe limited. Therefore it is important that the
initiation of network connectivity and access take no longer than is absolutely necessary. Having
efficient security and trust management schemes is critical to providing high-speed access to military
networks.

Figure 1: Typical air-ground network scenario.

Approved for Public Release; Distribution Unlimited.
2

Authentication of user identity must be a precondition to establishing secure communications
channels in a mobile ad hoc network (MANET) [2]. Security requirements in tactical MANETS are
considerably stricter than those of civilian mobile networks in that users exist at different levels of
authority and therefore require different access rights and priorities. A main requirement for a
authentication scheme used in MANETs are: authorized users must get access when required; the
protocol used must not reduce system availability; the communicating entities must be able to verify the
identity of the other party at the authority level required for the type of information exchanged; and
unauthorized users must not gain access to network resources and protected data [3]. Use of ZKP-based
authentication schemes due not rely on the availability of a centralized management of security
credential and therefore lend themselves to use in wireless mobile networks.

Approved for Public Release; Distribution Unlimited.
3

3.0 Methods, Assumptions, and Procedures

The authentication protocol selected for use in this effort is based on the Feige-Fiat-Shamir (FFS) zero-
knowledge proof (ZKP) of identity scheme [4], as implemented in the C computer language by Daniele
Raffo [5], and later modified by Nathanial Rowe [6] for use on an AFRL TCP/IP network. The C++ code
for the FFS ZKP code demonstrated here is documented in Appendices A and B of this report.

 The FFS ZKP identification scheme allows for anonymous authentication of identity through a
series of transactions involving two entities: the Prover, and the Verifier. The basic premise underlying
the scheme is that the Prover possess a secret token and seeks authentication by the Verifier, who must
authenticate the Prover based upon the secret token that the Prover has, through a series of challenges
without getting to know the Prover’s secret token [7]. A simplified version of this protocol can be
written [8],[9] as follows:

• An arbitrator (i.e., trusted third party) generates a random modulus n which is the product of two
large Blum primes integers p,q (i.e, n = pq). The arbitrator then publishes n .

• Using n, the Prover creates a secret vector s = [s1, s2,··· ,sk] with gcd(si,n) = 1, and
c = {ci = 1,k |c ∈ (0,1)}. Prover next computes a public vector v = [v1, v2,···,vk] using v, where
𝑣𝑣𝑖𝑖 ≡ 𝑠𝑠𝑖𝑖2 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛), and publishes the result.

• The authentication protocol takes the form:

1. Prover picks a random integer r, a random sign b ∈ {-1,1} and computes
 𝑥𝑥 = (−1)𝑐𝑐𝑖𝑖 =1,𝑘𝑘 ∙ 𝑟𝑟2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛, otherwise referred to as a witness, and sends it to the
Verifier.

2. Verifier selects random Booleans [a1,…,ai] where ai ∈ {0,1}. The Verifier then sends this
vector to the Prover as a challenge.

3. Prover computes y = r (s1
a1 s2

a2 ··· sk
ak) mod n using its private key. The Prover then sends the

result to the Verifier.

4. Verifier computes z = x (v1
a1v2

a2··· vk
ak) mod n and confirms z = y2 mod n. If the relation

proves true, then proof of identity is accepted. Confirmation of pass/fail is sent to the
Prover.

The series of transactions that make up the protocol are diagrammed in Figure 2. Depending on the
level of security required, the process can be repeated a number of times thereby decreasing the
probability that the Verifier can be fooled by a dishonest or malicious Prover.

Approved for Public Release; Distribution Unlimited.
4

Figure 2: Typical single round authentication process.

Approved for Public Release; Distribution Unlimited.
5

While wireless communications frees users from having to deal with a hardwired infrastructure
and fixed topology it, unfortunately, makes implementing security and trust management more difficult.
Mobile wireless network operations can be impacted as users move in and out of coverage range. As
the distance between wireless nodes increases, the signal to noise ratio decreases and the achievable
throughput is reduced making network operations somewhat unpredictable [10]. This can challenge
network activities and result in high error rate and asymmetric data rates, low transmission rates, large
latencies, and intermittent connectivity, as well as disconnection, and intermittent and unpredictable
operation [11]. Additionally, efficient authentication protocol operation can also be affected due to the
unavailability of resources. Deployed devices may have limited amounts of processing capability,
memory, and power availability which may delay, or restrict, the time exchange of data. As a result, the
testing of authentication protocols need to be carried out using systems appropriate to mobile
applications rather than on hard-wired, laboratory computer networks.

Our approach to testing involved porting existing ZKP-based authentication protocols (which
have been tested on networked desktop computers) to field-deployable, battery-operated wireless
devices destined for use in AFRL’s in-house small UAV research program. A basic two-node wireless
network was set-up in an indoor laboratory to allow for experimentation with various mobile device
configurations to demonstrate operation of the authentication protocol. The block diagram provided in
Figure 3 illustrates the configuration of the test network. Results obtained from this initial round of
testing would help determine the course of future outdoor experiments involving mobile airborne and
mobile ground nodes.

Two different wireless computer systems were selected: a payload system designed for
installation on a small UAV; and a portable ground station used for communicating with the airborne
payload, but also can be configured for mobile ground applications. The UAV payload electronics
package is shown in Figure 4 while the ground station is illustrated in Figure 5. Both the payload and
ground stations systems are designed to operate off of external (battery) power sources that are

Figure 3: Two processor benchtop wireless setup.

Approved for Public Release; Distribution Unlimited.
6

installed on either the UAV or the mobile ground vehicles. For benchtop testing purposes commercial
dc power supplies were employed. In addition, all systems tested were outfitted with 5.5 dBi rubber
duck antennas. The rubber duck antenna screws directly into the existing external antenna port and
swivels 360 degrees as well as tilts up to 90 degrees.

The UAV payload package consists of a processor board (model: PM-945GSE-270) and wireless
radio board (model: TL-WN861N) which are stacked and attached to a convection-cooled heatsink. An
instrumentation cable allows for external connections to a monitor, keyboard and network for
performing preflight tests.

Figure 4: UAV payload processor device.

Approved for Public Release; Distribution Unlimited.
7

The ground station is outfitted with a number of devices which include a processor board
(model: PM-LX2-800-R10) and wireless radio board (model: TL-WN861N) along with an RF attenuator, a
Cisco® five port 10/100 switch, and a Microhard Systems® spread spectrum modem (model: MHX320).
For the tests described herein only the processor and RF radio boards where utilized.

The PM-945GSE-270 and PM-LX2-800-R10 are highly integrated embedded computers
specifically optimized for multi-media applications requiring minimum installation space [12]. The
processor board is particularly suitable for low power and fan-less applications. Specifications for these
single-board computers are provided in Tables 1 and 2. Both systems use the same embedded radio
frequency (RF) wireless radio: model TL-WN861N. Specifications for the RF wireless board [13] are listed
in Table 3.

Figure 5: UAV ground station electronics package.

Approved for Public Release; Distribution Unlimited.
8

Table 1: UAV payload computer specifications.

Specification/Model PM-945GSE-N270
Form Factor PCI-104 Module
Processor Intel® Atom™ N270 CPU
Integrated Graphics Intel®945GSE
On-board Static Memory 1 GByte DDR2 SDRAM
System Controller Hub Chipset Intel®ICH7M
BIOS AMI BIOS
Compatible OS Microsoft® Windows XP™ SP2

Microsoft® Windows Vista Business™ (32bit)
Linux Ubuntu™ 8.10
Linux Fedora™ Core 6

Ethernet Controller Realtek® RTL8102E
Super I/O Controller Fintek® F81865
Dimensions 108.6 mm x 115.6 mm
Weight 250 g
Power consumption 5 VDC @ 2.6 A

Table 2: Ground station computer specifications.

Specification/Model PM-LX2-800-R10
Form Factor PC-104 Module
Processor AMD® Geode™ LX800 CPU
Integrated Graphics AMD® LX800
On-board Static Memory 1 GByte DDR2 SDRAM
System Controller Hub Chipset SMSC 3114
BIOS AMI BIOS
Compatible OS Microsoft® Windows XP™ SP2

Microsoft® Windows Vista Business™ (32bit)
Linux Ubuntu™ 8.10
Linux Fedora™ Core 6

Ethernet Controller Realtek® RTL8100C
Super I/O Controller SMSC 3114
Dimensions 90 mm x 90 mm
Weight 110 g
Power consumption 5 VDC @ 1.09 A

The TL-WN861N wireless adapter board complies with IEEE 802.11n, IEEE 802.11g, and
IEEE 802.11b standards. Wireless transmission rates are specified up to 300Mbps. This device supports
64/128/152-bit WEP, WPA/WPA2 and WPA-PSK/WPA2-PSK encryptions. This device can also
simultaneously operate bandwidth intensive applications such as voice and video. Applications requiring
a lot of bandwidth and that are sensitive to interruptions, such as voice and video applications, are given
priority in order to assure quality. The manufacturer claims that it also works well with other 11g and
11n protocol wireless products.

Approved for Public Release; Distribution Unlimited.
9

Table 3: UAV payload and ground station wireless modem specifications.

Specification/Model TL-WN861N
Form Factor 32-bit Mini PCI
Standards IEEE 802.11n/g/b

CSMA/CA with ACK
Wireless Signal Rates
With Automatic Fallback

11n:270/243/216/162/108/81/54/27 Mbps
 135/21.5/108/81/54/40.5/27/13.5 Mbps
 130/117/104/78/52/39/26/13 Mbps
 65/58.5/52/39/26/19.5/13/6.5Mbps
11g:54/48/36/24/18/12/9/6M (adaptive)
11b:11/5.5/2/1M (adaptive)

Frequency Range 2.4-2.4835 GHz
Wireless Transmit Power 20 dBm (max)
Modulation Type OFDM/CCK/16-QAM/64-QAM
Receiver Sensitivity 270 m -68 dBm@10%PER

130 m -68 dBm@10%PER
108 m -68 dBm@10%PER
 54 m -68 dBm@10%PER
 11 m -85 dBm@8%PER
 6 m -68 dBm@10%PER
 1 m -90 dBm@10%PER

Security 64/128/152 bit WEP, WPA/WPA/WPA2, WPA-
PSK/WPA2-PSK (TKIP/AES)

 The laboratory benchtop set-up for testing the authentication protocols between the two
different types of wireless systems is shown in Figure 6.

Figure 6: Benchtop test set-up.

Approved for Public Release; Distribution Unlimited.
10

 Two different system implementations of the authentication protocol were tested – with
network configurations limited to just two nodes. One case involved the use of two ground station units
as might be deployed in a mobile ground network. The other case employed a ground station and a
UAV payload to represent deployment in an air-to-ground network. In both cases, Prover code was
installed on one of the nodes, while Verifier code was installed on the other. As a follow-on test,
installation of the Prover and Verifier code was switched between the nodes in order to demonstrate
that a node could function as either a Prover or Verifier. Results of the tests run are discussed in the
section that follows.

 Prior to protocol testing, the configuration of the LINUX operating systems were verified.
Already installed on each system was LINUX Fedora™ release-11 and only minor software updates had
to be made. Compiling the ZKP authentication code did require use of GMP math library functions.
GMP is a free library, available for download via the internet, for arbitrary precision arithmetic,
operating on signed integers, rational numbers and floating point numbers. The main target
applications for GMP are cryptographic applications and research, internet security and algebraic
systems and research [14]. Installing the GMP libraries on the individual systems proved to be problem.

AFRL policies do not allow for unsecured systems to be connected to the internet so direct
download of the GMP files was not a possibility. While these files could be download to a CD-Rom via
an authorized desktop computer, neither the UAV payload nor the Ground Station Units were
configured to support installation of a CD-Rom drive. In the end, it was decided to download the GMP
files to a stand-alone computer system, compile the C code, then download the compiled code to the
UAV payload and Ground Station processors using a wired Ethernet connection. This hard-wired
connection was disconnected prior to wireless testing.

Approved for Public Release; Distribution Unlimited.
11

4.0 Results and Discussion

The objective of this short-duration effort involved porting a ZKP-base authentication protocol from a
desktop, cabled network set-up to a mobile, wireless network configuration for the purpose of
demonstrating operation over a wireless communication link. The expectations were that a successful
outcome would provide impetus for developing a more detailed plan for field deployment of the
protocol using mobile (air and ground) test assets.

The authentication protocol consists of a series of exchanges between two entities: a Prover,
and a Verifier (as was described in Section 3 and illustrated in Figure 2). The exchanges that occur are
made observable through use of timestamps that are output to display consoles. For the test case
involving the two ground stations, the resulting exchange reports for the Prover and Verifier are shown
in Figures 7 and 8 respectively.

Figure 7: Prover authentication screen display.

Figure 8: Verifier authentication screen display.

Approved for Public Release; Distribution Unlimited.
12

Figure 9 and Table 4 identify and describe the timestamps generated by the Prover’s code, while
Figure 10 and Table 5 describe the timestamps output by the Verfier’s code.

Table 4: Verifier response timestamp markers.

Marker Description
1 1st Timestamp: Prover establish communications connection
2 2nd Timestamp: Prover sends/publishes Public Key
3 3rd Timestamp: Prover sends/publishes modulos n
4 4th Timestamp: Prover sends witness (x)
5 5th Timestamp: Prover accepts challenge (a)
6 6th Timestamp: Prover sends response (y)

Figure 9: Prover response attribute.

Approved for Public Release; Distribution Unlimited.
13

Table 5: Verifier response timestamp markers.

Marker Description
A Machine is awaiting receipt of a request
1 1st Timestamp: Start counter upon receipt of a request
2 2nd Timestamp: Verifier receives public key
3 3rd Timestamp: Verifier receives modulos n
4 4th Timestamp: Verifier receives witness (x)
5 5th Timestamp: Verifier sends challenge (a)
6 6th Timestamp: Verifier receives response (y)
B Verify Authenticity of Prover
7 7th Timestamp: Elapsed time for completing authentication protocol
A’ Machine is awaiting receipt of a request

Figure 10: Verifier response attributes.

Approved for Public Release; Distribution Unlimited.
14

 An example screen display of a failed authentication attempt is provided in Figure 11. In this
case, the Prover-Verifier configuration was identical to that described above i.e., two ground station
systems communication over a wireless link. The failure was ultimately found to be caused by having
the ground station units’ processor board’s Ethernet connection enabled at the time that the RF radio’s
wireless connection was enabled. A hardwired Ethernet connection was made between the two units
for downloading compiled code and system configuration checking. Disabling the Ethernet connection
via an operating system call solved the protocol failure problem. It is not entirely clear why having both
communication channels enabled should have caused a failure.

 No results are available that show successful demonstration of protocol operation between a
UAV payload system and ground station. The two-node configuration only worked using a cabled
Ethernet connection with Prover code running on the UAV payload’s processor. When Verifier code was
run on the UAV payload, with Prover code running on the ground station, the protocol failed.
Furthermore, when the wireless link was employed the demonstration failed regardless of whether
Prover or Verifier code was being run on either of the two systems. A check was made to insure that the
Ethernet communication path was disabled and to eliminate it as the reason for failure. More time
would be required to identify why use of the payload system caused such problems.

Figure 11: Verifier unsuccessful authentication attempt display.

Approved for Public Release; Distribution Unlimited.
15

5.0 Conclusions

The primary objective of this work was to port a ZKP authentication protocol, known to work on a
desktop computer network, onto selected embedded processors and demonstrate operations over a
wireless communications link. Given the short duration of the effort, it was not possible to complete an
exhaustive performance evaluation. Suffice it to say, partial success was achieved in that protocol
operations were fully demonstrated on a pair of Ground Station systems. Unfortunately, problems were
encountered when using a UAV-Ground Station pair. With only a limited amount of in-house resources
available to carry out this work, no further investigations could be carried out to determine the reason
for protocol inoperability. Program results and lessons-learned are summarized below.

• The selected authentication protocol was demonstrated on two wireless ground station nodes,
each having identical processing and wireless radio hardware. Also demonstrated was the
ability for each node to function as both a protocol Prover and Verfier. It is noted that the
protocol must be initiated manually at each of the two nodes. Additional code would be needed
to automate the process.

• During testing with the two ground station nodes it was noted that the protocol would not
operate over the wireless link if the on-board Ethernet connection was enabled. Disabling the
Ethernet connection via an operating system call eliminated this problem. Originally, the
Ethernet connection was used to down-load the compiled C++ authentication protocol code,
then disconnected following completion system verification procedures and commencement of
wireless testing. The Ethernet connection is made by means of a connection on the PC-104
processor board, while the wireless connection is made via the RF radio daughter-board; two
separate connectors on two different boards. Further investigation of system hardware and
software configurations is warranted.

• Wireless operation of the protocol between a ground station node and airborne payload node
failed to be demonstrated. Bi-directional wireless communication was established between the
two nodes as evidenced by the ability of each node to “ping” the other. As was previously
noted, the UAV payload and ground station were not implemented using identical hardware.
The pinging procedure was implemented outside of the authentication protocol code which
could imply that there may be something unique about the authentication code that prevents
its operation on the payload system hardware – perhaps, the manner in which the
communications sockets were coded. Further investigation of this problem is warranted.

• Furthermore, testing of the protocol between the UAV payload and ground station nodes using
a wired Ethernet connection was only partially successful. The payload system could only be
configured to function as a Prover and not as a Verifier over the hard-wired connection. This
problem may be due to how the communication sockets are set up or, perhaps, has to do with

Approved for Public Release; Distribution Unlimited.
16

selection of the wireless versus wired communication ports. Further investigation of this
problem is warranted.

• Even though all the nodes were using the same version LINUX operating systems, there may be
some features that are impacted by node system hardware and (driver) software configurations.
A better understanding of the nuances regarding specific system implementations may be
required, especially if the authentication protocol code is expected to be run on a variety of
processing platforms. Also, a better understanding of the integration of the processing and RF
radio boards may be required. This familiarity can only be gained through working with the
various devices.

Approved for Public Release; Distribution Unlimited.
17

6.0 Recommendations

AFRL Rome Research Site technical personnel are currently pursuing technology investigations involving
the use of small, low cost UAV technology. Field testing of novel COTS-based UAV networking
approaches is carried out at AFRL’s Stockbridge Test Site. Here, data collections are carried out to
evaluate link performance, develop network protocols and applications, as well as evaluate their
performance, in realistic environments [15]. The availability of the UAVs and the Stockbridge Test Site
provide an ideal location for deploying and test ZKP-based authentication protocols in air-to-air, air-to-
ground and mobile on-the-ground scenarios. An aerial view of the Test Site, showing the air strip used
for testing the small UAVs, is provided in Figure 12. Two photographs showing typical UAV aircraft, one
in the field while and another opened-up in the laboratory, are shown in Figure 13.

Figure 12: AFRL Stockbridge Test Site.

 A) Small UAV at test site. B) Small UAV payload bay.

Figure 13: AFRL small UAVs.

 Approved for Public Release; Distribution Unlimited.
18

Porting of the ZKP authentication protocols from a hardwired desktop-centric processing
environment to a wireless mobile environment demonstrated that the protocols can be easily migrated
to systems designed and built for use with small UAVs. Furthermore, by making use of existing UAV test
program assets the cost and risk of deploying a working wireless data link between a UAV and mobile
ground station can be minimized. As has been noted earlier, some problems have been encountered
when attempting to operate the ZKP protocol between systems employing different CPU boards. This
problem is considered to be minor a minor one and, with some small amount of additional effort, should
be easily corrected. If follow-on protocol development work will be directed towards deployment on
AFRL’s UAV platforms then the work needs to be coordinated with processor payload designs being
developed for use under the small UAV program.

AFRL technical personnel are currently assembling new Ground Station and UAV payload
systems. Next generation ground station designs make use of the same processor boards and upgraded
wireless radio boards. An example of one such unit is shown in Figure 14. Given the noted difficulties in
operating the authentication protocols on different processing and wireless system configurations,
future protocol integration work should be carried out on the physical hardware that will be deployed in
the field. Therefore, protocol development should be worked in parallel with UAV program UAV
payload and ground station design and development.

Figure 14: Upgraded ground station.

Approved for Public Release; Distribution Unlimited.
19

UAV payload designs have not progressed to the point where a decision can be made regarding
the selection of hardware. Two candidate platforms have been procured for evaluation purposes: Via
Technologies® ARTiGo A1150™, which includes a full 64-bit dual core processor and support Wi-Fi
communications; and Embedded Systems TS-4800™ controlled board, featuring an 800 MHz ARM™
processor and capable accepting a Wi-Fi capable wireless daughter board. The two devices are shown in
Figures 15 and 16 respectively.

Even though all of the above mentioned systems are capable of running LINUX operating
systems, the configuration of software drivers and hardware devices may impact the operation of the
authentication protocols. It would be beneficial to evaluate both the operating systems, hardware
devices and authentication protocol, simultaneously, in order minimize integration problems. A more
detailed test plan should be developed to guide future deployment of ZKP-based authentication
protocols.

Figure 15: Upgraded payload package.

Figure 16: Miniature Processor payload.

Approved for Public Release; Distribution Unlimited.
20

7.0 References

[1] Liu, L. “ Security and Trust Management in Self-organizing Wireless Ad hoc Networks”, AFRL
Workshop Paper, College of Computing, Georgia Institute of Technology. 2009.

[2] Aboudagga, N., Rafaei, M., Eltoweissy, M., DaSilva L., and Quisquater, J., “ Authentication Protocols
for Ad Hoc Networks: Taxonomy and Research Issues”, Q2SWinet '05 Proceedings of the 1st ACM
international workshop on Quality of service & security in wireless and mobile networks, p. 1, 2005.

[3] Hegland, A., Winjum, E., Hedenstad, O., “A Framework for Authentication in NBD Tactical Ad Hoc
Networks”, IEEE Communications Magazine, October 2011, p. 64.

[4] Feige, U., Fiat, A., Shamir, A., “Zero-Knowledge Poofs of Identity”, Journal of Cryptology, 1988,
p.77-94.

[5] Raffo, D., “Digital Certificates and the Feige-Fiat-Shamir Zero-Knowledge Protocol”, Labratoire
d’Informatique, Ecole Polytechnique, France, pp. 37-56, 2002.

[6] Rowe, N., unpublished work regarding implementation of FFS ZKP protocols on TCP/IP networks,
2009.

[7] Kizza, J.M., “Feige-Fiat-Shamir ZKP Scheme Revisited”, International Journal of Computing and ICT
Research, Vol. 4, No. 1, p. 9, June 2010.

[8] AFRL-RI-TR-2011-178, “Airborne Network Trust Using Zero Knowledge Techniques”, Northrop
Grumman Systems Co., Reily, M., Card, S., p. 61.

[9] Aronsson, H. A., “Zero Knowledge Protocols and Small Systems”, Department of Computer Science,
Helsinki University of Technology, http://www.tml.tkk.fi/Opinnot/Tik-
110.501/1995/zeroknowledge.html .

[10] Liu, L., ibid, p2.

[11] Aidi, L. Changsu, J. “ Delay Tolerant Network”, School of Information and Communication
Technology KTH, Stockholm, Sweden, 2011, http://www.slideshare.net/lailiaidi/delay-tolerant-network-
11484982 .

[12] PM-945GSE-N270 Users Manual, IEI Technology Corporation, 17 August 2011.

[13] TL-WN861N Data Sheet, TP-LINK®, www.tp-link.com .

[14] The GNU Multiple Precision Arithmetic Library, http://gmplib.org/ .

[15] Hague, D., Kung, H.T., Suter, B., “Field Experimentation of COTS-Based UAV Networking”, IEEE
MILCOM 2006.

Approved for Public Release; Distribution Unlimited.
21

Appendix A: ZKP Prover Code

Approved for Public Release; Distribution Unlimited.
22

ZKP_PROVER/Makefile

Makefile for the FFS Zero-Knowledge Identification Scheme implementation

CC = gcc

LIBS = /usr/local/lib/libgmp.a

zkp: zkp.o center.o prover.o

$(CC) zkp.c center.c prover.c -o zkp -lm $(LIBS)

clean:

clear; rm -f zkp *~ *.o core

Approved for Public Release; Distribution Unlimited.
23

ZKP_PROVER/zkp.h

#define TRUE 1
#define FALSE 0

/* Multiplicity of challenge */
#define K 10
/* Number of rounds of the protocol */
#define T 1

mpz_t n; /* modulus (a Blum integer) */
mpz_t i[K]; /* Prover's public key */
mpz_t rndseed;

void setrndseed();
void publish_modulus();
void compute_keys();

Approved for Public Release; Distribution Unlimited.
24

ZKP_PROVER/center.c

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <gmp.h>
#include "zkp.h"

/*
 Publish the modulus (a Blum integer which prime factors
 are randomly chosen and 512 bits long)
*/

void publish_modulus() {
 mpz_t rand, tmpprime, tmp, prime1, prime2;
 gmp_randstate_t state;

 mpz_init(rand);
 mpz_init(tmpprime);
 mpz_init(tmp);
 mpz_init(prime1);
 mpz_init(prime2);
 mpz_init(n);

 gmp_randinit_lc_2exp_size(state, 128);

 /* computes 1st prime */
 setrndseed();
 gmp_randseed(state, rndseed);
 mpz_rrandomb(rand, state, 512);
 while (1) { /* repeat until prime is of
form 4r+3 */
 mpz_nextprime(tmpprime, rand);
 mpz_sub_ui(tmp, tmpprime, 3);
 if (mpz_divisible_ui_p(tmp, 4)) break;
 mpz_set(rand, tmpprime);
 }
 mpz_set(prime1, tmpprime);

 /* computes 2nd prime */
 setrndseed();
 gmp_randseed(state, rndseed);
 mpz_rrandomb(rand, state, 512);
 while (1) {
 mpz_nextprime(tmpprime, rand);
 mpz_sub_ui(tmp, tmpprime, 3);
 if (mpz_divisible_ui_p(tmp, 4)) break;
 mpz_set(rand, tmpprime);
 }
 mpz_set(prime2, tmpprime);

Approved for Public Release; Distribution Unlimited.
25

 /* computes modulus */
 mpz_mul(n, prime1, prime2);
 //gmp_printf("Publishing modulus: %Zd\n\n", n);

 //mpz_clear(rand);
 //mpz_clear(tmpprime);
 //mpz_clear(tmp);
 //mpz_clear(prime1);
 //mpz_clear(prime2);
 //gmp_randclear(state);
}

Approved for Public Release; Distribution Unlimited.
26

ZKP_PROVER/prover.c

#include <stdlib.h>
#include <stdio.h>
#include <gmp.h>
#include "zkp.h"

static mpz_t s[K]; /* private key */
static mpz_t r; /* random number */

/*
 Choose private and public key
*/
void compute_keys() {
 int index = 0, index2, flag;
 mpz_t candidate, inverse;
 gmp_randstate_t state;

 //printf("Computing keys ");

 gmp_randinit_lc_2exp_size(state, 128);
 setrndseed();
 gmp_randseed(state, rndseed);
 mpz_init(candidate);
 mpz_init(inverse);

 while (index < K) {
 //printf(". ");
 mpz_init(i[index]);
 mpz_init(s[index]);

 mpz_urandomm(candidate, state, n);

 /* test if candidate has already been chosen as key component */
 flag = FALSE;
 for (index2 = index - 1; index2 >= 0; index2--) {
 if (mpz_cmp(s[index2], candidate) == 0) {

flag = TRUE;
break;

 }
 }
 if (flag == TRUE) continue;

 mpz_mul(inverse, candidate, candidate);
 mpz_mod(inverse, inverse, n);
 if (mpz_invert(inverse, inverse, n) == 0) continue;

 mpz_set(s[index], candidate);
 mpz_set(i[index], inverse);

Approved for Public Release; Distribution Unlimited.
27

 index++;
 }

 //printf("\n\nPublic key:\n");
 // for (index = 0; index < K; index++)
//{
//gmp_printf("%Zd\n", i[index]);
//printf("size of i: %d", (sizeof(i)/sizeof(i[0])));
//}
//printf("Private key:\n");
 //for (index = 0; index < K; index++) gmp_printf("%Zd\n", s[index]);

// run at program close to
clear:
 //mpz_clear(candidate);
 //mpz_clear(inverse);
 //gmp_randclear(state);
}

/*
 Pick a random number and send the witness x (step 1 of the protocol)
*/
void witness(mpz_t x) {
 gmp_randstate_t state;

 mpz_init(r);
 mpz_init(x);

 gmp_randinit_lc_2exp_size(state, 128);
 setrndseed();
 gmp_randseed(state, rndseed);

 mpz_urandomm(r, state, n);
 mpz_mul(x, r, r);
 mpz_mod(x, x, n);
 //gmp_printf("\nWitness : %Zd\n\n", x);

 //gmp_randclear(state);

 //return x;
}

/*
 Send the response y (step 3 of the protocol)
 */
void response(mpz_t y, unsigned int e)
{
 int index;

Approved for Public Release; Distribution Unlimited.
28

 mpz_set(y, r);

 for (index = 0; index < K; index++)
 {
 if (e & (0x1 << index))
 mpz_mul(y, y, s[index]);
 }
 mpz_mod(y, y, n);

 //gmp_printf("Response : %Zd\n\n", y);
}

Approved for Public Release; Distribution Unlimited.
29

ZKP_PROVER/zkp.c

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <gmp.h>
#include <time.h>
#include <sys/time.h>
#include "zkp.h"

//network includes
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

/***

 Feige-Fiat-Shamir (FFS) Zero Knowledge (ZK) Identification Scheme:
 Networked Implementation:

Original by Daniele Raffo, 25 JUN 2002 - LIX, Ecole
Polytechnique

 Expanded by Nathaniel Rowe, 11 JAN 2012 - AFRL Rome

 This networked implementation uses the same FFS ZK format, but is
setup
 to function over a TCP/IP based network. ZK is preserved.

 This program is the ***CLIENT / PROVER*** edition

**
*****/

uint32_t stampstart();
uint32_t stampstop(uint32_t start);

int fastseed = TRUE;

int main(int argc, char **argv) {

 size_t words;
 int proof, temp;
 unsigned int e; /* random boolean vector (challenge) */
 mpz_t x; /* witness */
 mpz_t y; /* response */
 uint32_t start, stop; //time stamp start and stop

 mpz_init(x);

Approved for Public Release; Distribution Unlimited.
30

 mpz_init(y);
 mpz_init(rndseed);

 //START TIME TIMESTAMP
 start = stampstart();

 /****************** START NETWORK SETUP ******************/
 int sockfd, portno, s;
 struct sockaddr_in serv_addr;

 portno = 12303;
 sockfd = socket(AF_INET, SOCK_STREAM, 0);

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = inet_addr("127.0.0.1");
 serv_addr.sin_port = htons(portno);

 s = connect(sockfd, &serv_addr, sizeof(serv_addr));
 if(s<0)
 printf("Prover: Connection Failed\n");
 /****************** END NETWORK SETUP ******************/

 stop = stampstop(start);

 int t_var = T;

 for(t_var; t_var > 0; t_var--) //START FOR LOOP FOR T
 {

 mpz_init(rndseed);
 mpz_init(y);
 mpz_init(x);

 publish_modulus(); /* Prover publishes modulus n
*/
 compute_keys(); /* Prover chooses public/private keys
*/
 witness(x); /* Prover sets x */

 /****************** START Send Public Key ******************/
 char buffer[128];
 for(temp = 0; temp < K; temp++)
 {
 //printf("\n\nPacket data before\n");
 //gmp_printf("%Zd\n", i[temp]);

 mpz_export(buffer, &words, 1, 128, 0, 0, i[temp]); //export
 s = write(sockfd, buffer, sizeof(buffer)); //write to stream

 if (s<0)
printf("Prover: Public Key Write Failed\n");

Approved for Public Release; Distribution Unlimited.
31

 usleep(200);
 }

 //printf("\n\nPublic Key:\n");
 //for(temp = 0; temp<K; temp++) gmp_printf("%Zd\n\n", i[temp]);
 /****************** STOP Send Public Key ******************/

 stop = stampstop(start);

 /****************** START Send Modulus ******************/
 memset(buffer, 0, 128);
 mpz_export(buffer, &words, 1, 128, 0, 0, n); //export 'n' to a char
array

 s = write(sockfd, buffer, sizeof(buffer));
 if (s<0)
 printf("Prover: Modulus Write Failed\n");
 //printf("Modulus: ");
 //gmp_printf("%Zd\n", n);
 /****************** STOP Send Modulus ******************/

 stop = stampstop(start);

 /****************** START Send Witness ******************/
 memset(buffer, 0, 128);
 mpz_export(buffer, &words, 1, 128, 0, 0, x); //export 'x' to a char
array
 s = write(sockfd, buffer, sizeof(buffer));
 if (s<0)
 printf("Prover: X Write Failed\n");
 //printf("Witness: ");
 //gmp_printf("%Zd\n", x);
 /****************** STOP Send Witness ******************/

 stop = stampstop(start);

 /****************** START Get Challenge Bitmask ******************/
 char rxbuffer[K];
 unsigned long total = 0x0;
 int i = 0;

 //mpz_t total; /* response */
 //mpz_init(total);
 total = 0x0;

 s = read(sockfd, rxbuffer, K);
 if (s<0)
 printf("Prover: Challenge Read Failed\n");

 for(i; i < K; i++)
 {
 if(rxbuffer[i])

Approved for Public Release; Distribution Unlimited.
32

 total |= (0x1 << i);
 }

 //printf("%d\n", total);
 /****************** STOP Get Challenge Bitmask ******************/

 stop = stampstop(start);

 /******************** START Send Response Y *******************/
 response(y, total); /* Prover sends response to
Verifier */

 memset(buffer, 0, 128);
 mpz_export(buffer, &words, 1, 128, 0, 0, y); //export 'y' to a char
array
 s = write(sockfd, buffer, sizeof(buffer));
 if (s<0)
 printf("Prover: Write Failed for Y\n");

 //gmp_printf("Response x : %Zd\n\n", x);
 //gmp_printf("Response y : %Zd\n\n", y);
 //printf("total : %d\n", total);

 stop = stampstop(start);
 usleep(1000000); //let local clock advance to ensure
randomness

 } // END FOR LOOP FOR T

 mpz_clear(x);
 mpz_clear(y);
 mpz_clear(rndseed);

 close(sockfd);

 return (0);
}
/******************** STOP Send Response Y *******************/

/*
 Set the random seed from /dev/random
*/
void setrndseed()
{
 FILE *rnd;
 mpz_t rndtmp;
 unsigned long int idx;
 time_t t1;

 if (!fastseed) {
 mpz_init(rndtmp);

Approved for Public Release; Distribution Unlimited.
33

 rnd = fopen("/dev/random", "r");

 for (idx = 0; idx < 128; idx++) {
 mpz_set_ui(rndtmp, (unsigned long int) getc(rnd));
 mpz_mul_2exp(rndtmp, rndtmp, idx * 8); /* left shift */
 mpz_add(rndseed, rndseed, rndtmp);
 }

 fclose(rnd);
 //mpz_clear(rndtmp);
 }

 else {
 /* Set a faster seed. Do not use this for cryptographic purposes!
*/
 mpz_set_ui(rndseed, (unsigned long int) time(&t1));
 mpz_mul_ui(rndseed, rndseed, (unsigned long int) getpid());
 mpz_mul_ui(rndseed, rndseed, (unsigned long int) getppid());
 }
}

//Modified from www.codealias.info 15 July 2009
uint32_t stampstart()
{
 struct timeval tv;
 struct timezone tz;
 struct tm *tm;
 uint32_t start;

 gettimeofday(&tv, &tz);
 tm = localtime(&tv.tv_sec);

 start = tm->tm_hour * 3600 * 1000 + tm->tm_min * 60 * 1000 + tm-
>tm_sec
 * 1000 + tv.tv_usec / 1000;

 return (start);
}

uint32_t stampstop(uint32_t start)
{
 struct timeval tv;
 struct timezone tz;
 struct tm *tm;
 uint32_t stop;
 uint32_t elapsed;

 gettimeofday(&tv, &tz);
 tm = localtime(&tv.tv_sec);

Approved for Public Release; Distribution Unlimited.
34

 stop = tm->tm_hour * 3600 * 1000 + tm->tm_min * 60 * 1000 + tm-
>tm_sec

* 1000 + tv.tv_usec / 1000;

 elapsed = stop - start;
 printf("Time Elapsed: %d ms\n", elapsed);
 usleep(100);
}

Approved for Public Release; Distribution Unlimited.
35

Appendix B: ZKP Verifier Code

Approved for Public Release; Distribution Unlimited.
36

ZKP_VERIFIER/Makefile

Makefile for the FFS Zero-Knowledge Identification Scheme
implementation

CC = gcc
LIBS = /usr/local/lib/libgmp.a

zkp: zkp.o verifier.o
$(CC) zkp.c verifier.c -o zkp -lm $(LIBS)

clean:
clear; rm -f zkp *~ *.o core

Approved for Public Release; Distribution Unlimited.
37

ZKP_VERIFIER/zkp.h

#define TRUE 1
#define FALSE 0

/* Multiplicity of challenge */
#define K 10
/* Number of rounds of the protocol */
#define T 1

mpz_t n; /* modulus (a Blum integer) */
mpz_t i[K]; /* Prover's public key */
mpz_t rndseed;

void setrndseed();

Approved for Public Release; Distribution Unlimited.
38

ZKP_VERIFIER/verifier.c

#include <stdlib.h>
#include <stdio.h>
#include <gmp.h>
#include "zkp.h"

/*
 Sends a random bit vector as the challenge (step 2 of the protocol)
*/
unsigned int challenge()
{

 //return (bitmask);
}

/*
 Verifies the response from Prover (step 4 of the protocol)
*/
int verify(mpz_t x, mpz_t y, unsigned int e) {

 int index, result = FALSE;
 mpz_t test;
 mpz_init(test);

 mpz_mul(test, y, y);
 for (index = 0; index < K; index++)
 {
 if (e & (0x1 << index)) mpz_mul(test, test, i[index]);
 }
 mpz_mod(test, test, n);

 //gmp_printf("Verification: %Zd\n\n", test);
 if (mpz_cmp(x, test) == 0) result = TRUE;
 mpz_clear(test);

 return (result);
}

Approved for Public Release; Distribution Unlimited.
39

ZKP_VERIFIER/zkp.c

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <gmp.h>
#include <math.h>
#include <time.h>
#include <sys/time.h>
#include "zkp.h"

//network includes
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

/***

 Feige-Fiat-Shamir (FFS) Zero Knowledge (ZK) Identification Scheme:
 Networked Implementation:

 Original by Daniele Raffo, 25 JUN 2002 - LIX, Ecole Polytechnique
 Expanded by Nathaniel Rowe, 11 JAN 2012 - AFRL Rome

 This networked implementation uses the same FFS ZK format, but is
setup
 to function over a TCP/IP based network. ZK is preserved.

 This program is the ***SERVER / VERIFIER*** edition
 Version Information: Version 1.1.3
 Version Details:
 Successful ZK authentication between two networked machines.
Fixed
 a bug that causes intermittent bignum errors. Fixed a network
hang
 bug and now allows continually authentication at the Verifier.
Also
 now removing key information from memory for additional security.
 Future Release:
 -Make it easier to adjust size of FFS 'K' vector
 -Check use of 'T' vector for inconsistencies
 -Import secret keys from txt files so they are not transmitted
 at the start of each exchange.

**
*****/

Approved for Public Release; Distribution Unlimited.
40

uint32_t stampstart();
uint32_t stampstop(uint32_t start);

int fastseed = TRUE;

int main(int argc, char **argv) {

 unsigned int e; /* random boolean vector (challenge) */
 int proof, s, temp;
 uint32_t start, stop; //time stamp start and stop
 //rnd seed was here
 char buffer[128];
 mpz_t yt; /* define */
 mpz_t xt;

 /********************* SETUP NETWORK *******************/
 int sockfd, newsockfd, portno, clilen, binder;
 struct sockaddr_in serv_addr, cli_addr;
 clilen = sizeof(cli_addr);
 portno = 12303;

 sockfd = socket(AF_INET, SOCK_STREAM, 0);

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(portno);

 //bind the given port
 binder = bind(sockfd, (struct sockaddr *) &serv_addr,
sizeof(serv_addr));
 if(binder < 0)
 printf("Verifier: Bind Failed");

while(TRUE) //start loop to continually accept
connections
{
 printf("\nFeige-Fiat-Shamir ZKP Implementation:\n");
 printf("Network Edition, Version 1.1.2\n");
 printf("Verifier waiting for Prover access request...\n");

 listen(sockfd, 1);

 newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);
 if(newsockfd < 0)
 printf("Verifier: Socket Accept Failure");
 /****************** END NETWORK SETUP ******************/

 //START TIME TIMESTAMP:
 start = stampstart();
 stop = stampstop(start); //first timestamp

 int t_var = T;

Approved for Public Release; Distribution Unlimited.
41

 for(t_var; t_var > 0; t_var--) //START 'FOR LOOP' FOR T, CLOSE ~LINE
178
 {
 mpz_init(rndseed); //initialize random seed
 mpz_init(xt);
 mpz_init(yt);

 /******************* START Get Public Keys *********************/
 for(temp = 0; temp < K; temp++)
 {
 s = read(newsockfd, buffer, 128);
 mpz_import(i[temp], 1, 1, 128, 0, 0, buffer); //import 'public
key' from char buf
 memset(buffer, 0, 128);
 usleep(200);
 }
 //printf("\n\nPublic key:\n");
 //for (temp = 0; temp < K; temp++) gmp_printf("%Zd\n\n", i[temp]);
 /******************* END Get Public Keys *********************/

 stop = stampstop(start); //second timestamp

 /******************* START Get Publishing Modulus
*********************/
 memset(buffer, 0, 128);
 s = read(newsockfd, buffer, 128);
 mpz_import(n, 1, 1, 128, 0, 0, buffer); //import 'n' from char buf
 //gmp_printf("Publishing modulus: %Zd\n\n", n);
 /******************* END Get Publishing Modulus
*********************/

 stop = stampstop(start); //third timestamp

 /******************* START Get Witness *********************/
 memset(buffer, 0, 128);
 mpz_init(xt);
 s = read(newsockfd, buffer, 128);
 mpz_import(xt, 1, 1, 128, 0, 0, buffer); //import 'x' from char buf
 //gmp_printf("Received Witness: %Zd\n\n", xt);
 /******************* END Get Witness *********************/

 stop = stampstop(start); //fourth timestamp

 /******************* START Send Challenge *********************/
 unsigned int index, bit;
 unsigned long bitmask = 0x0;
 char bitvector[K];

 setrndseed();
 srandom((unsigned int) mpz_get_ui(rndseed));

 for (index = 0; index < K; index++)

Approved for Public Release; Distribution Unlimited.
42

 {
 bit = (int)(random() % 2);
 if (bit)
 {
 bitvector[index] = 0xFF;
 bitmask |= (0x1 << index);
 }
 else
 {
 bitvector[index] = 0x00;
 }
 //printf("%d", bit);
 }
 //printf("\nBITMASK: %d\n", bitmask);

 //now we send the challenge back to the prover
 s = write(newsockfd, bitvector, K);
 /******************* END Send Challenge *********************/

 stop = stampstop(start); //fifth timestamp

 /******************* START Get Response *********************/
 memset(buffer, 0, 128);
 s = read(newsockfd, buffer, sizeof(buffer)); //get response from
prover

 mpz_init(yt); /* initialize */
 mpz_import(yt, 1, 1, 128, 0, 0, buffer); //import 'y' from buffer

 //gmp_printf("Response xt : %Zd\n\n", xt);
 //gmp_printf("Response yt : %Zd\n\n", yt);
 //printf("total : %d\n", e);
 /******************** END Get Response *********************/

 stop = stampstop(start); //sixth timestamp

 /******************* VERIFY AUTHENTICATION ********************/
 proof = verify(xt, yt, bitmask); /* Verifier verifies if
response matches */

 if (proof)
 printf("Authentication successful!\n");
 else
 printf("Authentication failed!\n");

 stop = stampstop(start); //seventh timestamp

 } //END FOR LOOP FOR T

 mpz_clear(xt);
 mpz_clear(yt);

Approved for Public Release; Distribution Unlimited.
43

 mpz_clear(rndseed);

 close(newsockfd);
}

 return (0);
}
 /******************* END VERIFY AUTHENTICATION ********************/

 /******************* Random Seed Determination
*********************/
 //Set the random seed from /dev/random

void setrndseed() {

 FILE *rnd;
 mpz_t rndtmp;
 unsigned long int idx;
 time_t t1;

 if (!fastseed) {
 mpz_init(rndtmp);

 rnd = fopen("/dev/random", "r");

 for (idx = 0; idx < 128; idx++) {
 mpz_set_ui(rndtmp, (unsigned long int) getc(rnd));
 mpz_mul_2exp(rndtmp, rndtmp, idx * 8); /* left shift */
 mpz_add(rndseed, rndseed, rndtmp);
 }

 fclose(rnd);
 mpz_clear(rndtmp);
 }

 else {
 /* Set a faster seed. Do not use this for cryptographic purposes!
*/
 mpz_set_ui(rndseed, (unsigned long int) time(&t1));
 mpz_mul_ui(rndseed, rndseed, (unsigned long int) getpid());
 mpz_mul_ui(rndseed, rndseed, (unsigned long int) getppid());
 }
}

 /******************* Time Stamping *********************/
//Modified from www.codealias.info 15 July 2009
uint32_t stampstart()
{
 struct timeval tv;
 struct timezone tz;
 struct tm *tm;

Approved for Public Release; Distribution Unlimited.
44

 uint32_t start;

 gettimeofday(&tv, &tz);
 tm = localtime(&tv.tv_sec);

 start = tm->tm_hour * 3600 * 1000 + tm->tm_min * 60 * 1000 + tm-
>tm_sec

* 1000 + tv.tv_usec / 1000;

 return (start);
}

uint32_t stampstop(uint32_t start)
{
 struct timeval tv;
 struct timezone tz;
 struct tm *tm;
 uint32_t stop;
 uint32_t elapsed;

 gettimeofday(&tv, &tz);
 tm = localtime(&tv.tv_sec);

 stop = tm->tm_hour * 3600 * 1000 + tm->tm_min * 60 * 1000 + tm-
>tm_sec

* 1000 + tv.tv_usec / 1000;

 elapsed = stop - start;
 printf("Time Elapsed: %d ms\n", elapsed);

 usleep(100);
}

Approved for Public Release; Distribution Unlimited.
45

List of Symbols, Abbreviations, and Acronyms

AFRL Air Force Research Laboratory
COTS Commercial-Off-The-Shelf
dBi decibel isotropic
dc direct current
FFS Feige-Fiat-Shamir
GMP GNU Multiple Precision
MANET Mobile Ad Hoc Network
MHz Mega-Hertz
RF Radio Frequency
TCP/IP Transmission Control Protocol/Internet Protocol
UAV Unmanned Aerial Vehicle
WEP Wired Equivalent Privacy
WPA Wi-Fi Protected Access
WPA PSK Wi-Fi Protected Access Pre-Shared Key
ZKP Zero Knowledge Proof

Approved for Public Release; Distribution Unlimited.
46

	Figures
	Tables
	1.0 Summary
	2.0 Introduction
	3.0 Methods, Assumptions, and Procedures
	4.0 Results and Discussion
	5.0 Conclusions
	6.0 Recommendations
	7.0 References
	Appendix A: ZKP Prover Code
	Appendix B: ZKP Verifier Code
	List of Symbols, Abbreviations, and Acronyms

